Learning by Necessity:
 Government Demand, Capacity Utilization, \& Productivity

Ethan Ilzetzki
London School of Economics

April 2024

Overview

Can demand pressures affect productivity?
How do capacity-constrained firms adapt to demand?
Study this through effects of G on productivity

- In US WWII aircraft plants
- Detailed archival production-line data of all aircraft plants

Shifting military needs \rightarrow
causal identification of demand shocks
TFPQ $\uparrow 0.3 \%$ per $1 \% \uparrow$ in demand
"Learning by Necessity" (Evidence + Theory)

- "Learning by doing" occurs in primarily in capacity constrained plants
- Running the economy "hot" could stimulate productivity.

Academic Research Context

Capacity utilization, endogenous growth, induced innovation

- Effects of demand \rightarrow productivity implicit in endogenous growth models
- Recent advances in cycle \rightarrow trend
- Literature on induced innovation, demand \rightarrow direction of technical change. Expand

Empirical literature on fiscal multipliers

- Investigates Keynesian, wealth effect channels
- Largely ignores earlier LBD and endogenous growth literature Expand

Learning by doing in WWII munitions plants

- Motivating observation for endogenous growth literature
- Based on non-causal correlations
- Transmission mechanisms not well understood Expand

Historical Context and Data

Background

World War II: largest fiscal shock in US economic history

Aircraft was the largest US industry and received the most procurement \$s

US enters the war with high unemployment, but is at full employment by December 1941

Capacity (labor and capital) hitting constraints by 1942

- This is the main concern of the War Production Board and War Manpower Commission throughout the war

Government Consumption: Share of GDP

Sources: Bureau of Economic Analysis and the author

Aircraft Procurement: Share of Pre-War GDP

Source: Civilian Production Administration, Major War Supply Contracts ($>\$ 25 \mathrm{~K}$), BEA, and author's calculations. Procurement is 5 -month moving average and annualized.

Unemployment

Sources: NBER Macrohistory database (monthly series, line); Historical Statistics of the United States (annual series, Xs).

Data Sources

The US War Production Board kept exceptionally detailed production, input, and labor records for munitions industries

Aircraft manufacturers required to report Aeronautical Monthly Progress Reports (AMPR) with detail on output, inputs, and utilization

- Reported to Army Air Force (AAF) base at Wright's Field, Ohio, managing procurement and aircraft modification.
- Aircraft manufacturers were frequently audited by AAF

Additional sources: Archives of the US War Manpower Commission, Department of the Navy, Army Air Force, Convair, National War Aircraft Council

Key Raw Variables

Output per direct hours worked: at the aircraft level for last aircraft each month (plant \times model)

- Includes both onsite and outsourced production
- Similar to direct calculation of aircraft deliveries divided by payroll hours
- Advantage: physical output, excludes overhead, synchronizes outputs with inputs (time to build)

Capital: Total floor space used per quarter, including yard space (plant)

- Similar (but noisier) results when using capex
- Advantage: Most cap ex is structures, confounding land values with real investment

Hours: Total payroll of hours worked in direct production (plant \times model), and in each shift \times day (plant)

Key Calculated Variables

Capital Interpolated (linearly) from quarterly to monthly
$\frac{k}{h}$ (plant \times model): Assume plant equalizes capital/hours across production lines

Capital Utilization: $\frac{\text { Total weekly hours worked }}{168 \times \text { Max workers on first shift }}$

- Follows wartime measurement practice and Basu, Fernald, and Kimball (2006): shift utilization

TFP: Residualized using Cobb Douglas with labor share of $\frac{2}{3}$

Summary Statistics

Panel A: Firm-level statistics									
	Mean	Min	P10	P25	Median	P75	P90	Max	Coef. Var.
\# of plants	1.6	1	1	1	1	2	3	7	0.85
Models produced	2.8	1	1	1	1.5	3	8	12	1.04
Total sales (\$1,000)	694,000	4,710	25,231	130,116	1,193,764	2,221,488	3,104,902	3,675,244	1.45
Observations:	38								
Panel B: Plant-level statistics									
	Mean	Min	P10	P25	Median	P75	P90	Max	Coef. Var.
\# of models	2.0	1	1	1	1	2	4	8	0.75
Peak production employment	10,170.4	373	621	1,599	6,977	15,182	24,034	48,128	1.03
Avg. monthly production (1,000s lbs.)	992.2	8.0	25.8	76.2	480	1,471	2,404	5,497	1.22
Cum. Investment (\$1,000)	19,329	0	276	1,447	12,141	31,151	48,658	94,898	1.10
Max. floor space (1,000 sq. feet)	1,598	72	165	444	1,265	2,443	3,485	6,206	0.85
Observations:	61								
Panel C: Production-line-level statistics									
	Mean	Min	P10	P25	Median	P75	P90	Max	Coef. Var.
Peak employment	7,465	55	481	1,465	4,556	9,818	16,021	125,360	1.63
Avg. monthly planes	61.0	0.5	2.0	11.3	36.1	83.8	160.6	339.2	1.10
Avg. monthly production ($1,000 \mathrm{~s}$ lbs.)	605.8	3.4	13.2	44.9	272.9	919.1	1,906	4,933	1.31
Observations:	141								

Aggregate Production Function

Source: AMPR and author's calculation

Capital Utilization

Hours per Worker

Shifts in Aircraft Demand and Identification

LBD: Pre-Trends

Traditional LBD regression:

$$
\log \left(y_{m p t}\right)=\alpha_{m}+\alpha_{p}+\alpha_{t}+\beta \log (\text { CumOutput })_{m p t}+\varepsilon_{m p t}
$$

Estimating Equation

$$
\Delta_{h} \log z_{m p, t+h}=\alpha_{m p}+\alpha_{t}+\beta_{h}^{L B D} \log Y_{m p, t}+\beta_{h}^{L B N_{1}}\left(U_{p, 0}>\bar{U}_{0}\right) \log Y_{m p, t}+\text { controls }+\varepsilon_{i, t}^{h},
$$

- Local projections specification, 2 way fixed effects
- m, p, t: model, plant, month
- Dependent variable: $z_{m p, t}$, labor productivity or TFP
- Explanatory variable: $Y_{m p, t}$, aircraft demand
- Heterogeneity variable: $U_{m p, t}$, initial capacity utilization
- Include 6 monthly lags of dependent variable: aircraft demand
- Learning by Doing: Set $\beta^{L B N}=0$ and estimate $\beta^{L B D}$
- Learning by Necessity: $\beta^{L B D}$
- How much more "learning" in capacity constrained plants?

Instrument: Broad Aircraft Types

Instrument demand for aircraft from production line $m p$ with the total production of all aircraft in broad category that includes model m, excluding $m p$ itself ("leave one out")

Shifting military needs for different aircraft types \rightarrow shifting demand across broad aircraft types

Identifying assumption: Shift in procurement across broad aircraft types (e.g. bomber vs. fighter) over time isn't driven by (expected) differential productivity trends.

Production by Broad Aircraft Type

Monthly Number of Planes per Production Line

Results

Output per Hour Worked

Local projections response of log output per hour worked to 1% shock to aircraft demand, instrumented with the ("leave one out") production of broad aircraft of the same broad type. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 90% and 95% Newey-West standard errors shaded. First stage F-stat at 12-month horizon $=24$.

TFP Response

TFP Controlled for Capital Utilization

Local projections response of log output per hour worked to 1% shock to aircraft demand, instrumented with the ("leave one out") production of broad aircraft of the same broad type. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 90% and 95% Newey-West standard errors shaded. First stage F-stat at $12-$ month horizon $=30$.

The "Learning by Necessity" Hypothesis

Productivity growth induced by demand hitting constrained capacity

Explore multiple dimensions of capacity constraints:

1. Capital utilization
2. Labor utilization
3. Wages

Triple Difference Specification

Investigating channels by interacting production in production line $m p$ in month t with plant characteristic c

1. $c=1$ if plant p had capital utilization above median at beginning of war (1942)
2. $c=1$ if plant p had hours per worker above median at beginning of war (1942)... (ect.)

Impulse responses have a $3 \times$ dif interpretation: relative productivity response to (instrumented) output in plants with high vs. low capacity constraints

IV:
$\left.y_{\text {mpt }+h}=\widehat{\beta_{h}^{3 D}[\text { Output } \times c}\right]_{\text {mpt }}+\omega \widehat{\text { Output }}{ }_{\text {mpt }}+\eta \hat{c}_{p}+$ lags $+\mathrm{FE}+\varepsilon_{\text {mpt }}^{3 D}$

Output per Worker Response to Demand Relative Response in High Capital Utilization Plants

Local projections response of log output per hour worked to 1% shock to aircraft demand interacted with a dummy $=1$ if plant had above-median initial capacity utilization. These are instrumented with the ("leave one out") production of broad aircraft of the same broad type and its interaction with the capital utilization dummy. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 90% and 95% standard errors shaded. F-stat at $12-$ month horizon $=14$.

TFP Response to Demand

High vs. Low Capital Utilization Plants

Local projections response of TFP to 1% shock to aircraft demand interacted with a dummy $=1$ if plant had above-median initial capacity utilization. These are instrumented with the ("leave one out") production of broad aircraft of the same broad type and its interaction with the capital utilization dummy. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 90% and 95% standard errors shaded. F-stat at 12 -month horizon $=15$.

Relative Responses of TFP to Demand

 Other Capacity Constraint Metrics

Labor Utilization

Wages

WMC Labor Market Classification

Local projections response of TFP to 1% shock to aircraft demand interacted with a dummy $=1$ if plant had above-median initial hours per worker (left-hand panel) or was located in a local labor market with above-sample-median wages. These are instrumented with the ("leave one out") production of broad aircraft of the same broad type and its interaction with the dummy. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 90% and 95% standard errors shaded. F-stat at 12 -month horizon $=16,17$, and 12 , respectively.

How Did Plants Increase Productivity?

Mechanisms

The historical narrative points to several channels through which TFP may have increased.

1. Improved production methods: Most notably move from job-shop to production line methods
2. Greater reliance on production outsourcing
3. Labor relations reduced absenteeism and turnover

History Time Series

Move to Mass Production Methods

Bell Aircraft Corp.
 Volume Last Year
 Shows Sharp Gain

The new production unit, it is pointed out, was completed in June and was designed to enable use of "straight-line" assembly methods. In September, ground was broken for a larg addition to make this plant a complete rabrication and assembly unit. As the year ended. work was being rushed to complete this plant for production use.

```
Consolidated Vuliee
Aircraft Corporation
    Annual Report
```

Mass production methods were introduced,
poration also designed and put into operation
the first powered conveyor assembly line in the aircraft industry.

Annual Report 1945

WSJ, Feb 6, 1942

> MASS PRODUCTION-The technique that used to fill this country's roads with flivvers has been successfully opplied to war planes, os witness this view of an oircraft assembly line. Photo was taken of the plant of the Grumman Aircroft Engineering Corporation, Bethpage, which is busy turning out swarms of Wildcats to claw Axis and Jop bombers.

Brooklyn Daily Eagle, Oct 12, 1942

- Using newspaper articles and annual reports to create count variable for each new "mass production" technique introduced.

Mass Production Technique Adoption

Number of mass-production methods adopted plotted against log cumulative production 12 months earlier. Both series are residualized from time, plant, and aircraft model fixed effects. Red dots and regression lines are for plants with above median capital utilization at the beginning of the war. Blue dots and lines are for plants and below median utilization. Regression coefficients and standard errors for each subsample reported.

Outsourcing

Relative Response in High vs. Low Capital Utilization Plants

Local projections response of percent outside production to 1% shock to aircraft demand interacted with a dummy = 1 if plant had above-median initial capacity utilization. These are instrumented with the ("leave one out") production of broad aircraft of the same broad type and its interaction with the capital utilization dummy. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 90% and 95% standard errors shaded. F-stat at 12 -month horizon $=13$

Absenteeism

Relative Response in High vs. Low Labor Utilization Plants

Local projections response of monthly hours lost due to worker absence to 1% shock to aircraft demand interacted with a dummy $=1$ if plant had above-median initial capacity utilization. These are instrumented with the ("leave one out") production of broad aircraft of the same broad type and its interaction with the capital utilization dummy. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 90% and 95% standard errors shaded. F-stat at 12 -month horizon $=6$.

Learning by Necessity: Theory

One Period Version: Setup

Plant operates with technology

$$
Y=z(H L)^{\alpha}(U K)^{1-\alpha}
$$

- K, L: Capital, workers-Fixed factors
- Face adjustment costs in dynamic model
- U, H : Capital utilization, Hours-Flexible factors
- Convex cost to utilization: $\delta(U) K$
- Wage convex in hours: $w(H) L$
- Have access to Traditional technology at zero cost or can adopt Modern technology at cost $A . z^{M}>z^{T}$

Cost Minimization for Given z

$$
\min _{H, U} w(H) L+\delta(U) K
$$

s.t.

$$
z(H L)^{\alpha}(U K)^{1-\alpha} \geq \bar{Y}
$$

FOC:

$$
w^{\prime}(H) H L=\delta^{\prime}(U) U K
$$

- \Rightarrow equalizing marginal costs of utilization across factors
- Marginal utilization costs increasing in $\frac{\bar{Y}}{L^{\alpha} K^{1-\alpha}}$
- \Rightarrow Value of technology adoption increasing in $\frac{\bar{Y}}{L^{\alpha} K^{1-\alpha}}$
- Which increases U and H in equilibrium

Cost Functions

Left hand panel: Cost as a function of demand with traditional and modern technologies
Right hand panel: Cost savings from using modern technology as a function of utilization. Adoption cost is justified at high utilization rates.

Technology Adoption and Cap. Utilization

High demand \Rightarrow high utilization \Rightarrow high marginal costs
High marginal costs \Rightarrow greater cost savings from technology adoption

Utilization endogenous, but a sufficient statistic for high unanticipated demand relative to current productive capacity

Full Dynamic Model in a Nutshell

Now capital and labor can adjust at convex costs
High unanticipated demand
\Rightarrow factor accumulation over time
\Rightarrow high utilization in the short run
Can now simulate the theoretical equivalent of triple difference:

- High vs. low demand
- Unanticipated vs. anticipated gives high vs. low utilization
- In data this is due to old vs. young plants

Calibrated model:

- Quantifies the (gross) cost savings due to technology adoption

Dynamic Model: Main Results

Left: Estimated cost savings of modern technology adoption (percent of average plant's NPV of costs) by demand and capacity utilization

Right: Difference between cost savings of modern technology adoption in high vs. low demand plants by capacity utilization

Wrapping Up

Contribution

Causal evidence of demand \rightarrow Productivity

- When resources are scarce, plants meet $\frac{1}{5}$ of increased demand with TFP increases

Effect is larger in more capacity-constrained plants

- Less constrained plants respond more in terms of capacity utilization
- Necessity as the mother of innovation?

Based on newly digitized data giving comprehensive mapping of wartime aircraft production function

Simple theory of "learning by necessity"

Appendix

Academic Research Context

Learning by doing in WWII munitions plants

- Motivating observation for endogenous growth literature
- Based on non-causal correlations
- Transmission channels not well understood close

Learning curves (based on non-causal correlations)

- Wright (1936); Middleton (1945); Searle (1945); Asher (1956); Alchian (1963); Rapping (1965); Bell \& Scott-Kemmis (1990); Thompson (2001); Field (2022)
- Exception using modern data in a single plant: Levitt et al (2013)

Academic Research Context

Empirical literature on fiscal multipliers

- Investigates Keynesian, wealth effect channels
- Largely ignores earlier LBD and induced innovation literature Close

Large literature reviewed in

- Ramey $(2011,2016,2019)$
- Chodorow-Reich (2019)

US wars to identify fiscal shocks

- Barro (1979); Ramey (2011); Nakamura \& Steinsson (2014); Brunet (2017)

Academic Research Context

Capacity utilization, induced innovation, endogenous growth

- Effects of demand \rightarrow productivity implicit in endogenous growth models
- Old literature on induced innovation hasn't been brought into discussion on fiscal policy, business cycle analysis

Demand \rightarrow productivity in endogenous growth models

- Romer (1992), Young (1991, 1998); Lucas (1993); Jones (1995); Arthur (1989), Benigno \& Fornaro (2018); Anzoategui et al (2019)

Demand scale effects

- Hall (1989); Basu and Fernald (1997); Davis \& Weinstein (2003); Acemoglu \& Lim (2004); Costinot et al (2019)

Induced innovation hypothesis

- Hickman (1957); Fellner (1961); Kennedy (1964); Samuelson (1965), Drandakis \& Phelps (1966); Phelps (1966); von Weizsacker (1966); Shell (1967); Romer (1987); Newell et al (1999); Benkard (2000) Popp (2002); Acemoglu \& Restrepo (2018)

Historical Support for Identification

The primary purpose of the periodical overhauling of aircraft schedules is to shift emphasis from one model to another in the light of combat experience and military needs.

Manpower Problems in the Airframe Industry
Report, War Manpower Commission, Sep 1943, National Archives
In 1944 our war production had to meet front-line needs, constantly changing with the shifting locales of warfare, the weaknesses and strengths demonstrated in combat, and our inventiveness as well as the enemy's. Less emphasis was placed on increasing quantities of everything required to equip an army, a navy, and an air force, and more on those specific items needed to replace battle losses and to equip particular forces for particular operations.

Standard Deviation of Productivity Across Production Lines

Standard deviation of log aircraft per hour worked across airframe manufacturers in each month, 5-month moving average. Residualized from time and aircraft model fixed effects. Results are similar when excluding time fixed effects. Source: AMPR and the author.

Sample Page from AMPR Form

The LBD and Progress Curve Literature

Eyeballing the raw data shows virtually every production line becomes more productive over time

Existing literature runs the regression:

$$
\log \left(y_{m p t}\right)=\alpha_{m}+\alpha_{p}+\alpha_{t}+\beta \log (\text { CumOutput })_{m p t}+\varepsilon_{m p t}
$$

y : log output per hour, p: plant, t: month, m: model Return

C-54 Production in Two Douglas Aircraft Plants

Santa Monica (top); Chicago (bottom)

Shifting production to new plant within firm
\rightarrow productivity decline
\rightarrow lower output

Two Models in Convair's San Diego Plant B-24 (top); PB4Y (bottom)

Shifting production to new product within plant \rightarrow productivity decline \& lower output

LBD By OLS

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Cum Y	$\begin{gathered} 0.382^{* * *} \\ (.011) \end{gathered}$	$\begin{gathered} 0.406^{* * *} \\ (.011) \end{gathered}$	$\begin{gathered} 0.322^{* * *} \\ (.003) \end{gathered}$	$\begin{gathered} 0.294^{* * *} \\ (.005) \end{gathered}$	$\begin{gathered} 0.326^{* * *} \\ (.009) \end{gathered}$		$\begin{gathered} 0.278^{* * *} \\ (.010) \end{gathered}$	$\begin{aligned} & 0.014 \\ & (.011) \end{aligned}$
Current Y						$\begin{gathered} 0.268^{* * *} \\ (.007) \end{gathered}$	$\begin{gathered} 0.0574^{* * *} \\ (.009) \end{gathered}$	$\begin{gathered} 0.0426^{* * *} \\ (.005) \end{gathered}$
Time FE		X		X	X	X	X	X
Plant FE			X	X				
Plant*Model FE					X	X	X	x
Lagged y								X
Observations	2553	2553	2553	2553	2553	2491	2491	1906

Standard errors in parentheses

* $p<0.05$, "* $p<0.01$, *** $p<0.001$

Return

Pre-Trend in Output Per Worker

Local projections response of log output per hour worked to 1% shock to aircraft demand, instrumented with the ("leave one out") production of broad aircraft of the same broad type. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output, and control for (log) of total workers. 90% and 95% Newey-West standard errors shaded. First stage F-stat at 12-month horizon $=24$.

Pre-Trend in TFP

Local projections of output per worker response to 1% increase in demand. 95% confidence intervals in gray. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of dependent variable and output.

Historical Support for Identification (ii)

The complex causation of program changes is illustrated by the aircraft program. Each quarterly aircraft schedule represented a cut under its predecessor. In part this reflected lower than anticipated combat losses.
[In 1944, t]he demand for four-engine long-range heavy bombers, transport vessels and heavy artillery ammunition rose dramatically during the year, while the need for training planes, patrol vessels, mine craft, and radio equipment fell off in varying degrees.

WPB Production in 1944
Report, War Production Board, 1944

Historical Support for Identification (iii)

[In the early war years, Air Corps Tactical School (ACTS) instructors] believed that bombers had enough self-contained firepower to defend themselves on the way to their targets.
Clearly after the second Schweinfurt raid [of 17 August 1943, where bomber squads saw massive losses] it was time for a change in the doctrine of unescorted strategic bombing. The bomber forces could not continue to sustain such heavy losses.
A directive on fighter allocation was released on October 31 that stated, "the primary role of all U.S. fighter units in the U.K. until further notice will be the support and protection of the heavy bombers"

The Evolution of the Long-Range Escort Doctrine in World War II
Lesher (1988)

Output's Own Response to Demand

Local projections response of log output to 1% shock to aircraft demand, instrumented with the ("leave one out") production of broad aircraft of the same broad type. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 90% and 95% Newey-West standard errors shaded. First stage F-stat at 12-month horizon

Output per Worker Response: OLS

Local projections response of log output to 1% shock to aircraft demand, OLS. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 90% and 95% Newey-West standard errors shaded.

TFP Response: OLS

Local projections response of TFP to 1% shock to aircraft demand, OLS. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 90% and 95% Newey-West standard errors shaded.

TFP Response: No Capital Utilization Control

Local projections response of TFP, not adjusted for capital utilization, to 1% shock to aircraft demand, instrumented with the ("leave one out") production of broad aircraft of the same broad type. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of production. 90% and 95% Newey-West standard errors shaded.
First stage F-stat at 12 -month horizon $=32$. Return

Comparing Measures of Plant Capital

(a) Floor Space vs. Capital Investment in Structures; (b) Floor Space vs. Capital Investment in Structures with 2 way fixed effects; (c) Floor Space with 9 month lag vs. Capital Investment in Structures with 2 way fixed effects; (d) Capital Investment in Equipment vs. in Structures 2 way fixed effects

TFP Response: Addressing Heterogeneous Treatment Effects Bias

Local projections response of TFP, adjusted for capital utilization, to 1% shock to aircraft demand, instrumented with the ("leave one out") production of broad aircraft of the same broad type interacted with a dummy variable equalling one for the first half of the sample, as suggested by Goodman Bacon (2021). Includes month and plant \times model (production line) fixed effects, 6 monthly lags of production. 90% and 95% Newey-West standard errors shaded.
First stage F-stat at 12 -month horizon $=7.5$. Return

Capacity Utilization and Demand

Despite enormous concerns about labor and facilities shortages, the historical record suggests this didn't affect demand patterns.
> [t]he Advisory Commission to the Council of National Defense announced that the criteria for placing orders under negotiated contracts should be, as far as possible, "the use of plants which now have excess or unused capacity and the selection of localities where there are reservoirs of unused labor... Despite this announcement most defense orders continued to be placed with customary suppliers."

Correlates with Modification Center Employment

	(1)	(2)	(3)	(4)	(5)
Dependent variable	Hours in plant	Productivity	Productivity	Productivity	Productivity
Mod. Ctr. Employment	$0.912^{* * *}$		-0.018	0.033	-0.021
	$(.040)$		$(.051)$	$(.121)$	$(.086)$
Hours in Plant		-0.002		-0.047	
		(0.008)		(0.101)	
Mod. Ctr. \times			0.005		
High Initial Cap U.					(0.104)
N	179	2,550	153	153	153
adj. R^{2}	0.138	-0.035	-0.042	-0.044	
Standard errors in parentheses					
${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$					

Return

Capacity Constraint Indicators

Correlations at beginning of war production drive

	Capital utilization	Hours per worker	Wages	Labor market priority
Capital utilization	1			
Hours per worker	0.32*	1		
Wages	0.11	-0.02	1	
Labor market priority	0.29*	-0.04	$0.42^{* * *}$	1

Return

Who Were the Constrained Plants?

	Capital Utilization			Wages	
	Low	High		Low	High
$\Delta \%$ Output per Worker	$\mathbf{1 2 7}$	$\mathbf{1 0 4}$		$\mathbf{1 1 7}$	$\mathbf{1 0 3}$
Firm Age (Months)	172	191		178	190
Plant Age (Months)	65	$\mathbf{1 3 7}$		110	108
Hours per Pound	3.2	3.1		3.0	3.4
Airplanes Produced	38	77		77	54
Unit Cost (000's \$)	107	124		87	147
Wing Span (Meters)	21.8	19.7		20.9	19.8
Public Plant Financing (mln \$)	15.0	14.5		16.9	11.9^{*}

Averages in January 1943, except for plant financing (January 1945).
Changes from January 1943 to January 1945
${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$

Output per Worker Response to Demand - Controlling for Plant Age
 Relative Response in High Capital Utilization Plants

Local projections response of log output per hour worked to 1% shock to aircraft demand interacted with a dummy $=1$ if plant had above-median initial capacity utilization. These are instrumented with the ("leave one out") production of broad aircraft of the same broad type and its interaction with the capital utilization dummy. Controlling for plant age and the interaction between aircraft demand and a dummy $=1$ if plant is above median in age. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 90% and 95% standard errors shaded.
F-stat at 12-month horizon $=3$. Return

TFP Response to Demand - Controlling for Plant Age Relative Response in High Capital Utilization Plants

Local projections response of TFP to 1% shock to aircraft demand interacted with a dummy $=1$ if plant had above-median initial capacity utilization. These are instrumented with the ("leave one out") production of broad aircraft of the same broad type and its interaction with the capital utilization dummy. Controlling for plant age and the interaction between aircraft demand and a dummy $=1$ if plant is above median in age. Includes month and plant \times model (production line) fixed effects, 6 monthly lags of output. 95% standard errors shaded. F-stat at 12 -month horizon $=3$.

Production Methods

Before 1940 airplanes were largely manufactured by handwork; by the end of 1942 the transition to mass production methods had occurred.

Craven and Cate vol. 6, 1955
Nobody had ever sold enough airplanes to finance massproduction tooling, or to justify its cost. For markets that bought one or two airplanes at a time, or a few dozen at the most, it was plain horse sense to custom-build them... Mass production required machines of complexity and precision far beyond anything ever before attempted, and there was no incentive to try it until airplanes were ordered by thousands.

Taylor and Wright, 1947
In peacetime, the aircraft industry had had no opportunity to acquire familiarity with line production techniques; these techniques were not needed to meet peacetime production demands and were not used because of heir high cost at peacetime volumes of output.

TFP or Economies of Scale?

L-R: Labor Productivity Response; Labor Productivity Response: High vs. Low Capital Util.
T-B: Controlling for Growth of Factors of Production; Residualizing with a Range of Scale Parameters

```
Return
```


Controlling for Spillovers from Peer Production Lines

L-R: TFP Response; Relative TFP Response: High vs. Low Capital Utilization Plants
T-B: Control: Average Productivity Growth of All Other Production Lines Producing Same Broad Type; Control: Average Productivity Growth of All Other Production Lines Using the Same Motor Manufacturer; Control: Average Production of All Other Production Lines Using the Same Motor Manufacturer

Outsourcing

The prime contractors had not used before 1939 the system of purchasing parts and sub-assemblies, so common among other industries, and in general they had little liking for it... This system allowed the use of a pool of unskilled labor, including two groups that until then had been little used by heavy industry, women and [African Americans], but it put a heavier burden on management and proved more difficult to schedule accurately than had previous methods.

One ingenious form of expansion was the multiplicity of small feeder plants nurtured by the major companies in small suburban or rural communities, miles away from the congested central plants.

Labor Relations

The turnover in 1943 amounted to more than eighty percent of the work force...
Companies were forced to hire more workers than were needed, knowing that a percentage of them would e absent every day. But a time came when this "safety margin" of surplus workers could no longer be recruited. The factories had to reduce absenteeism or reduce the output of planes... Many and ingenious were the devices used to cope with the problem. Factories sent telegrams to the homes of absentees, inquiring after their welfare and telling them how they were needed in the war. Others sent visiting nurses to make first hand check-ups... Surveys searched for the causes of absenteeism... Working conditions were improved...
"Exit interviewers" attempted to learn the reason for every voluntary quit; management sought to eliminate every possible focus of discontent.

Mass Production: Time Series

Cumulative share of plants adopting mass production methods (lower line) and the number of methods adopted by the average plant (top line).

```
Return
```


Outsourcing: Time Series

Share of work hours in the assembly of aircraft that were outsourced to feeder plants from the median airframe plant.

Worker Absence: Time Series

Quit Rates: Time Series

News Sources for Mass Production Methods

Sources

- Business Week
- Fortune Magazine
- New York Times
- Wall Street Journal
- Local newspapers at locations of all plants (newspapers.com)
- Annual reports taken from Mergent archives and Proquest

Search terms Company names plus:

- "mass" "production" within 5 words of each other
- "assembly" "line" within 5 words
- "automotive"
- All articles human read

Learning by Necessity: Dynamic Theory

Setup

Plant operates using a Cobb-Douglas production function:

$$
Y_{t} \leq z\left(H_{t} L_{t}\right)^{\alpha}\left(U_{t} K_{t}\right)^{1-\alpha}
$$

Capital and workers accumulate according to

$$
\begin{gathered}
K_{t+1} \leq I_{t}+(1-d) K_{t} \\
L_{t+1} \leq L_{t}+D_{t}
\end{gathered}
$$

Plant faces convex costs to:

Investment

$$
K_{t} J\left(I_{t} / K_{t}\right)
$$

Hiring/firing

Capital utilization

$$
\delta\left(U_{t}\right)
$$

Labor utilization

$$
W_{t}+w\left(H_{t}\right)
$$

Cost Minimization

$$
\min _{D_{t}, L_{t+1}, l_{t}, K_{t+1}, H_{t}, U_{t}} \sum_{t=0}^{\infty} \prod_{j=0}^{t-1}\left(\frac{1}{1+r_{j}}\right) \operatorname{Cost}_{t}
$$

Where:

$$
\operatorname{Cost}_{t}=\begin{gathered}
W_{t} L_{t}+L_{t} w\left(H_{t}\right)+L_{t}\left[W_{t}+w\left(H_{t}\right)\right] \Psi\left(D_{t} / L_{t}\right)+ \\
K_{t} \delta\left(U_{t}\right)+K_{t} J\left(I_{t} / K_{t}\right)+r_{t} K_{t}
\end{gathered}
$$

S.t. capital and worker accumulation and satisfying demand Y_{t}

Return

Functional Forms

Investment costs:

$$
J\left(\frac{l}{K}\right)=\frac{\varphi}{2}\left(\frac{l}{K}-d\right)^{2} .
$$

Utilization costs

$$
\delta(U)=\delta_{0} \frac{U}{1-U}
$$

Hiring/firing:

$$
\psi\left(\frac{D}{L}\right)=\frac{\psi}{2}\left(\frac{D}{L}\right)^{2} .
$$

Labor utilization / overtime pay:

$$
w(H)=\bar{w}[H+\omega(H-F T) \equiv(H>F T)],
$$

where ω is the overtime rate, $F T$ is full time hours, and \equiv is an indicator function equal to one if hours exceed full time and zero otherwise.

Calibration

Calibrating steady state to post-war period (matched exactly):

Parameter/Target	Value	Source
d	0.08	Literature
r	0.03	Post war data
$\bar{H}=F T$	0.24	40 hour workweek
ω	0.5	Typical overtime rates
\bar{w}	0.25	Typical overhead
$\overline{W F T}$	0.36	$1 \frac{1}{2}$ daily shifts, 5 days a week
α	$\frac{2}{3}$	Post-war labor share

Calibrating to post-war capital and labor overhang:

Parameter	Value	Target 1944-48	Value
ϕ	1.2	Capital reduction	1.12 log points
ψ	0.975	Worker reduction	1.65 log points

Simulation: Average Firm

Hit plant with unanticipated ("MIT") World War II shock to demand starting in 1938 Return

Simulation: Low Demand

Scale shock to plant at 25 percentile of demand Return
Lowers factor accumulation, utilization, and costs \rightarrow lower incentive to adopt technology

Simulation: Low Capacity Utilization

Giving plant 2-year advance warning allows it to accumulate factors to match plant at 25 percentile of utilization Reurn

"Experiment"

Average firm saw 33% productivity increase
Simulate cost reduction from technology adoption that increases z from 75% of post-war TFP to post-war TFP

Compare high to low demand, matching cumulative orders from 75th and 25th percentile of plants operating during war

Compare high to low utilization giving (no) advance warning of war to match 75 th and 25 th percentile of plants

Cost Savings from Technology Adoption

Relative Cost Savings from Tech Adoption

